Robust Block Coordinate Descent

نویسندگان

  • KIMON FOUNTOULAKIS
  • RACHAEL TAPPENDEN
چکیده

In this paper we present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Robust Coordinate Descent (RCD). At each iteration of RCD, a block of coordinates is sampled randomly, a quadratic model is formed about that block and the model is minimized approximately/inexactly to determine the search direction. An inexpensive line search is then employed to ensure a monotonic decrease in the objective function and acceptance of large step sizes. We prove global convergence of the RCD algorithm, and we also present several results on the local convergence of RCD for strongly convex functions. Finally, we present numerical results on large-scale problems to demonstrate the practical performance of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Parallel Block Coordinate Descent for Large-Scale Saddle Point Problems

We consider convex-concave saddle point problems with a separable structure and non-strongly convex functions. We propose an efficient stochastic block coordinate descent method using adaptive primal-dual updates, which enables flexible parallel optimization for large-scale problems. Our method shares the efficiency and flexibility of block coordinate descent methods with the simplicity of prim...

متن کامل

Parallel Direction Method of Multipliers

We consider the problem of minimizing block-separable convex functions subject to linear constraints. While the Alternating Direction Method of Multipliers (ADMM) for two-block linear constraints has been intensively studied both theoretically and empirically, in spite of some preliminary work, effective generalizations of ADMM to multiple blocks is still unclear. In this paper, we propose a pa...

متن کامل

A Flexible Coordinate Descent Method for Big Data Applications

In this paper we present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Flexible Coordinate Descent (FCD). At each iterat...

متن کامل

A Coordinate Descent Method for Robust Matrix Factorization and Applications

Matrix factorization methods are widely used for extracting latent factors for low rank matrix completion and rating prediction problems arising in recommender systems of on-line retailers. Most of the existing models are based on L2 fidelity (quadratic functions of factorization error). In this work, a coordinate descent (CD) method is developed for matrix factorization under L1 fidelity so th...

متن کامل

Large Scale Kernel Learning using Block Coordinate Descent

We demonstrate that distributed block coordinate descent can quickly solve kernel regression and classification problems with millions of data points. Armed with this capability, we conduct a thorough comparison between the full kernel, the Nyström method, and random features on three large classification tasks from various domains. Our results suggest that the Nyström method generally achieves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015